Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Nat Plants ; 10(1): 13-24, 2024 01.
Article in English | MEDLINE | ID: mdl-38225352

ABSTRACT

DNA methylation is an essential component of transposable element (TE) silencing, yet the mechanism by which methylation causes transcriptional repression remains poorly understood1-5. Here we study the Arabidopsis thaliana Methyl-CpG Binding Domain (MBD) proteins MBD1, MBD2 and MBD4 and show that MBD2 acts as a TE repressor during male gametogenesis. MBD2 bound chromatin regions containing high levels of CG methylation, and MBD2 was capable of silencing the FWA gene when tethered to its promoter. MBD2 loss caused activation at a small subset of TEs in the vegetative cell of mature pollen without affecting DNA methylation levels, demonstrating that MBD2-mediated silencing acts strictly downstream of DNA methylation. TE activation in mbd2 became more significant in the mbd5 mbd6 and adcp1 mutant backgrounds, suggesting that MBD2 acts redundantly with other silencing pathways to repress TEs. Overall, our study identifies MBD2 as a methyl reader that acts downstream of DNA methylation to silence TEs during male gametogenesis.


Subject(s)
DNA Methylation , DNA Transposable Elements , DNA Transposable Elements/genetics , CpG Islands , Promoter Regions, Genetic , Gametogenesis/genetics
2.
bioRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-37214879

ABSTRACT

Silencing pathways prevent transposable element (TE) proliferation and help to maintain genome integrity through cell division. Silenced genomic regions can be classified as either euchromatic or heterochromatic, and are targeted by genetically separable epigenetic pathways. In plants, the RNA-directed DNA methylation (RdDM) pathway targets mostly euchromatic regions, while CMT DNA methyltransferases are mainly associated with heterochromatin. However, many epigenetic features - including DNA methylation patterning - are largely indistinguishable between these regions, so how the functional separation is maintained is unclear. The linker histone H1 is preferentially localized to heterochromatin and has been proposed to restrict RdDM from encroachment. To test this hypothesis, we followed RdDM genomic localization in an h1 mutant by performing ChIP-seq on the largest subunit, NRPE1, of the central RdDM polymerase, Pol V. Loss of H1 resulted in NRPE1 enrichment predominantly in heterochromatic TEs. Increased NRPE1 binding was associated with increased chromatin accessibility in h1 , suggesting that H1 restricts NRPE1 occupancy by compacting chromatin. However, RdDM occupancy did not impact H1 localization, demonstrating that H1 hierarchically restricts RdDM positioning. H1 mutants experience major symmetric (CG and CHG) DNA methylation gains, and by generating an h1/nrpe1 double mutant, we demonstrate these gains are largely independent of RdDM. However, loss of NRPE1 occupancy from a subset of euchromatic regions in h1 corresponded to loss of methylation in all sequence contexts, while at ectopically bound heterochromatic loci, NRPE1 deposition correlated with increased methylation specifically in the CHH context. Additionally, we found that H1 similarly restricts the occupancy of the methylation reader, SUVH1, and polycomb-mediated H3K27me3. Together, the results support a model whereby H1 helps maintain the exclusivity of heterochromatin by preventing encroachment from other competing pathways.

3.
Sci Adv ; 9(46): eadi9036, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967186

ABSTRACT

DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here, we characterize two additional complex members: α-crystalline domain (ACD) containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher-order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of MBD5/6 complexes regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive a massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of the gene-silencing MBD5/6 complex and act to drive the formation of higher-order, dynamic assemblies at CG methylation (meCG) sites.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA-Binding Proteins/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , DNA Transposable Elements/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , DNA Methylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
4.
J Am Chem Soc ; 145(46): 25080-25085, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37948671

ABSTRACT

Comparison of biosynthetic gene clusters (BGCs) found in devastating plant pathogens and biocontrol fungi revealed an uncharacterized and conserved polyketide BGC. Genome mining identified the associated metabolite to be treconorin, which has a terpene-like, trans-fused 5,7-bicyclic core that is proposed to derive from a (4 + 3) cycloaddition. The core is esterified with d-glucose, which derives from the glycosidic cleavage of a trehalose ester precursor. This glycomodification strategy is different from the commonly observed glycosylation of natural products.


Subject(s)
Polyketides , Terpenes , Multigene Family , Fungi/genetics
5.
Nat Commun ; 14(1): 7484, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980416

ABSTRACT

The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Geminiviridae , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Heterochromatin/metabolism , Geminiviridae/genetics , Histones/metabolism , DNA Replication , DNA Repair/genetics , Methyltransferases/metabolism
6.
bioRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37808859

ABSTRACT

Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating ("nascent") transcripts across diverse crops and other plants using capped small (cs)RNA-seq. We discovered that unstable transcripts are rare, unlike in vertebrates, and often originate from promoters. Additionally, many "distal" elements in plants initiate tissue-specific stable transcripts and are likely bone fide promoters of yet-unannotated genes or non-coding RNAs, cautioning against using genome annotations to infer "enhancers" or transcript stability. To investigate enhancer function, we integrated STARR-seq data. We found that annotated promoters, and other regions that initiate stable transcripts rather than unstable transcripts, function as stronger enhancers in plants. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements encompass diverse structures and mechanisms in eukaryotes.

7.
bioRxiv ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37662299

ABSTRACT

DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG-binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here we characterize two additional complex members: α-crystalline domain containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of complex components regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of gene silencing complexes that act to drive the formation of higher order, dynamic assemblies.

8.
Nat Cell Biol ; 25(10): 1495-1505, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37723298

ABSTRACT

In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance. How then can the biogenesis of Y-linked piRNAs be initiated? Here, using Suppressor of Stellate (Su(Ste)), a Y-linked Drosophila melanogaster piRNA locus as a model, we show that Su(Ste) piRNAs are made in the early male germline via 5'-to-3' phased piRNA biogenesis initiated by maternally deposited 1360/Hoppel transposon piRNAs. Notably, deposition of Su(Ste) piRNAs from XXY mothers obviates the need for phased piRNA biogenesis in sons. Together, our study uncovers a developmentally programmed, intergenerational mechanism that allows fly mothers to protect their sons using a Y-linked piRNA locus.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Piwi-Interacting RNA , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Argonaute Proteins/genetics
9.
Nat Commun ; 14(1): 4135, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438334

ABSTRACT

MORPHEUS' MOLECULE1 (MOM1) is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we find that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with an artificial zinc finger to an unmethylated FWA promoter leads to establishment of DNA methylation and FWA silencing. This process is blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MICRORCHIDIA 6 (MORC6). We find that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes is impaired in the mom1 mutant. In addition to RdDM sites, we identify a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.


Subject(s)
Adenosine Triphosphatases , Arabidopsis Proteins , Arabidopsis , Transcription Factors , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatin/genetics , DNA , DNA Methylation , Homeodomain Proteins , RNA , Transcription Factors/genetics , Adenosine Triphosphatases/genetics
10.
J Agric Food Chem ; 71(30): 11502-11519, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37471583

ABSTRACT

Natural products biosynthesized from biocontrol fungi in the rhizosphere can have both beneficial and deleterious effects on plants. Herein, we performed a comprehensive analysis of natural product biosynthetic gene clusters (BGCs) from the widely used biocontrol fungus Trichoderma afroharzianum T22 (ThT22). This fungus encodes at least 64 BGCs, yet only seven compounds and four BGCs were previously characterized or mined. We correlated 21 BGCs of ThT22 with known primary and secondary metabolites through homologous BGC comparison and characterized one unknown BGC involved in the biosynthesis of eujavanicol A using heterologous expression. In addition, we performed untargeted transcriptomics and metabolic analysis to demonstrate the activation of silent ThT22 BGCs via the "one strain many compound" (OSMAC) approach. Collectively, our analysis showcases the biosynthetic capacity of ThT22 and paves the way for fully exploring the roles of natural products of ThT22.


Subject(s)
Biological Products , Hypocreales , Gene Expression Profiling , Hypocreales/genetics , Multigene Family , Biosynthetic Pathways/genetics
11.
Genome Biol ; 24(1): 96, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37101218

ABSTRACT

BACKGROUND: The microrchidia (MORC) proteins are a family of evolutionarily conserved GHKL-type ATPases involved in chromatin compaction and gene silencing. Arabidopsis MORC proteins act in the RNA-directed DNA methylation (RdDM) pathway, where they act as molecular tethers to ensure the efficient establishment of RdDM and de novo gene silencing. However, MORC proteins also have RdDM-independent functions although their underlying mechanisms are unknown. RESULTS: In this study, we examine MORC binding regions where RdDM does not occur in order to shed light on the RdDM-independent functions of MORC proteins. We find that MORC proteins compact chromatin and reduce DNA accessibility to transcription factors, thereby repressing gene expression. We also find that MORC-mediated repression of gene expression is particularly important under conditions of stress. MORC-regulated transcription factors can in some cases regulate their own transcription, resulting in feedback loops. CONCLUSIONS: Our findings provide insights into the molecular mechanisms of MORC-mediated chromatin compaction and transcription regulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Silencing , Transcription Factors/metabolism , DNA Methylation , Gene Expression Regulation, Plant
12.
Nat Plants ; 9(3): 460-472, 2023 03.
Article in English | MEDLINE | ID: mdl-36879017

ABSTRACT

DNA methylation has been utilized for target gene silencing in plants. However, it is not well understood whether other silencing pathways can be also used to manipulate gene expression. Here we performed a gain-of-function screen for proteins that could silence a target gene when fused to an artificial zinc finger. We uncovered many proteins that suppressed gene expression through DNA methylation, histone H3K27me3 deposition, H3K4me3 demethylation, histone deacetylation, inhibition of RNA polymerase II transcription elongation or Ser-5 dephosphorylation. These proteins also silenced many other genes with different efficacies, and a machine learning model could accurately predict the efficacy of each silencer on the basis of various chromatin features of the target loci. Furthermore, some proteins were also able to target gene silencing when used in a dCas9-SunTag system. These results provide a more comprehensive understanding of epigenetic regulatory pathways in plants and provide an armament of tools for targeted gene manipulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Histones/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Silencing , Gene Expression , Gene Expression Regulation, Plant
13.
Nat Commun ; 14(1): 1736, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977663

ABSTRACT

Arabidopsis telomeric repeat binding factors (TRBs) can bind telomeric DNA sequences to protect telomeres from degradation. TRBs can also recruit Polycomb Repressive Complex 2 (PRC2) to deposit tri-methylation of H3 lysine 27 (H3K27me3) over certain target loci. Here, we demonstrate that TRBs also associate and colocalize with JUMONJI14 (JMJ14) and trigger H3K4me3 demethylation at some loci. The trb1/2/3 triple mutant and the jmj14-1 mutant show an increased level of H3K4me3 over TRB and JMJ14 binding sites, resulting in up-regulation of their target genes. Furthermore, tethering TRBs to the promoter region of genes with an artificial zinc finger (TRB-ZF) successfully triggers target gene silencing, as well as H3K27me3 deposition, and H3K4me3 removal. Interestingly, JMJ14 is predominantly recruited to ZF off-target sites with low levels of H3K4me3, which is accompanied with TRB-ZFs triggered H3K4me3 removal at these loci. These results suggest that TRB proteins coordinate PRC2 and JMJ14 activities to repress target genes via H3K27me3 deposition and H3K4me3 removal.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Histones/genetics , Histones/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Telomere-Binding Proteins/metabolism , Demethylation , Gene Expression Regulation, Plant , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism
14.
Science ; 379(6638): 1209-1213, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36893216

ABSTRACT

In addition to the conserved RNA polymerases I to III (Pols I to III) in eukaryotes, two atypical polymerases, Pols IV and V, specifically produce noncoding RNA in the RNA-directed DNA methylation pathway in plants. Here, we report on the structures of cauliflower Pol V in the free and elongation conformations. A conserved tyrosine residue of NRPE2 stacks with a double-stranded DNA branch of the transcription bubble to potentially attenuate elongation by inducing transcription stalling. The nontemplate DNA strand is captured by NRPE2 to enhance backtracking, thereby increasing 3'-5' cleavage, which likely underpins Pol V's high fidelity. The structures also illuminate the mechanism of Pol V transcription stalling and enhanced backtracking, which may be important for Pol V's retention on chromatin to serve its function in tethering downstream factors for RNA-directed DNA methylation.


Subject(s)
Brassica , DNA Methylation , DNA-Directed RNA Polymerases , Plant Proteins , RNA, Plant , RNA, Untranslated , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , RNA, Plant/metabolism , Brassica/enzymology , Plant Proteins/metabolism , RNA, Untranslated/metabolism , DNA, Plant/metabolism , Protein Conformation , Catalytic Domain
15.
Proc Natl Acad Sci U S A ; 120(4): e2216822120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36652483

ABSTRACT

Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) systems have been developed as important tools for plant genome engineering. Here, we demonstrate that the hypercompact CasΦ nuclease is able to generate stably inherited gene edits in Arabidopsis, and that CasΦ guide RNAs can be expressed with either the Pol-III U6 promoter or a Pol-II promoter together with ribozyme mediated RNA processing. Using the Arabidopsis fwa epiallele, we show that CasΦ displays higher editing efficiency when the target locus is not DNA methylated, suggesting that CasΦ is sensitive to chromatin environment. Importantly, two CasΦ protein variants, vCasΦ and nCasΦ, both showed much higher editing efficiency relative to the wild-type CasΦ enzyme. Consistently, vCasΦ and nCasΦ yielded offspring plants with inherited edits at much higher rates compared to WTCasΦ. Extensive genomic analysis of gene edited plants showed no off-target editing, suggesting that CasΦ is highly specific. The hypercompact size, T-rich minimal protospacer adjacent motif (PAM), and wide range of working temperatures make CasΦ an excellent supplement to existing plant genome editing systems.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Editing , Arabidopsis/genetics , CRISPR-Cas Systems , Plants/genetics , Genome, Plant/genetics , Transcription Factors/genetics , Homeodomain Proteins/genetics , Arabidopsis Proteins/genetics
16.
Nat Commun ; 14(1): 85, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36604425

ABSTRACT

Pathogens rely on expression of host susceptibility (S) genes to promote infection and disease. As DNA methylation is an epigenetic modification that affects gene expression, blocking access to S genes through targeted methylation could increase disease resistance. Xanthomonas phaseoli pv. manihotis, the causal agent of cassava bacterial blight (CBB), uses transcription activator-like20 (TAL20) to induce expression of the S gene MeSWEET10a. In this work, we direct methylation to the TAL20 effector binding element within the MeSWEET10a promoter using a synthetic zinc-finger DNA binding domain fused to a component of the RNA-directed DNA methylation pathway. We demonstrate that this methylation prevents TAL20 binding, blocks transcriptional activation of MeSWEET10a in vivo and that these plants display decreased CBB symptoms while maintaining normal growth and development. This work therefore presents an epigenome editing approach useful for crop improvement.


Subject(s)
Manihot , Xanthomonas , Manihot/genetics , Epigenome , Xanthomonas/genetics , Disease Resistance/genetics , Transcription Factors/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
17.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711532

ABSTRACT

MOM1 is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we found that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with artificial zinc finger to unmethylated FWA promoter led to establishment of DNA methylation and FWA silencing. This process was blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MORC6 . We found that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes was impaired by mutation of MOM1 or mutation of genes encoding the MOM1 interacting PIAL1/2 proteins. In addition to RdDM sites, we identified a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.

19.
Cell ; 185(24): 4574-4586.e16, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36423580

ABSTRACT

CRISPR-Cas systems are host-encoded pathways that protect microbes from viral infection using an adaptive RNA-guided mechanism. Using genome-resolved metagenomics, we find that CRISPR systems are also encoded in diverse bacteriophages, where they occur as divergent and hypercompact anti-viral systems. Bacteriophage-encoded CRISPR systems belong to all six known CRISPR-Cas types, though some lack crucial components, suggesting alternate functional roles or host complementation. We describe multiple new Cas9-like proteins and 44 families related to type V CRISPR-Cas systems, including the Casλ RNA-guided nuclease family. Among the most divergent of the new enzymes identified, Casλ recognizes double-stranded DNA using a uniquely structured CRISPR RNA (crRNA). The Casλ-RNA-DNA structure determined by cryoelectron microscopy reveals a compact bilobed architecture capable of inducing genome editing in mammalian, Arabidopsis, and hexaploid wheat cells. These findings reveal a new source of CRISPR-Cas enzymes in phages and highlight their value as genome editors in plant and human cells.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , Animals , Humans , Cryoelectron Microscopy , Gene Editing , Genome , Bacteriophages/genetics , DNA , RNA , Mammals/genetics
20.
Cell Rep ; 41(8): 111699, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36417865

ABSTRACT

Silencing of transposable elements (TEs) drives the evolution of numerous redundant mechanisms of transcriptional regulation. Arabidopsis MBD5, MBD6, and SILENZIO act as TE repressors downstream of DNA methylation. Here, we show, via single-nucleus RNA-seq of developing male gametophytes, that these repressors are critical for TE silencing in the pollen vegetative cell, a companion cell important for fertilization that undergoes chromatin decompaction. Instead, other silencing mutants (met1, ddm1, mom1, morc) show loss of silencing in all pollen nucleus types and somatic cells. We show that TEs repressed by MBD5/6 gain chromatin accessibility in wild-type vegetative nuclei despite remaining silent, suggesting that loss of DNA compaction makes them sensitive to loss of MBD5/6. Consistently, crossing mbd5/6 to histone 1 mutants, which have decondensed chromatin in leaves, reveals derepression of MBD5/6-dependent TEs in leaves. MBD5/6 and SILENZIO thus act as a silencing system particularly important when chromatin compaction is compromised.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA-Seq , Arabidopsis/genetics , Arabidopsis/metabolism , Pollen/genetics , Pollen/metabolism , DNA Transposable Elements , Chromatin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...